4. Circulation and vorticity

This chapter is mainly concerned with vorticity. This particular flow property is hard to
overestimate as an aid to understanding fluid dynamics, essentially because it is difficult to mod-
ify. To provide some context, the chapter begins by classifying all different kinds of motion in a
two-dimensional velocity field. Equations are then developed for the evolution of vorticity in
three dimensions. The prize at the end of the chapter is a fluid property that is related to vorticity
but is even more conservative and therefore more powerful as a theoretical tool.

4.1 Two-dimensional flows

According to a theorem of Helmholtz, any two-dimensional NO{x, y) can be decom-
posed as

V = zx Oy + 0Oy, (4.1)

where the “streamfunction](x, y) and “velocity potentigllx, y)  are scalar functions. The
first part of the decomposition is non-divergent and the second part is irrotational.

If we write V = uX + vV for the flow in the horizontal plane, then 4.1 says that
= —0Y/0y+0x/0x andv = oY/ 0x+dx/0y . We define theertical vorticity { and the
divergence [as follows:
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D_Dw_0x+ay 07x. (4.3)

Determination of the velocity field giveh abdrequires boundary conditions gn  axd
Contours ofyy are called “streamlines”.

The vorticity is proportional to the local angular velocity abbut . Itis known entirely
from Y(x, y) or the first term on the rhs of 4.1. As seen in chapter 2, solid-body rotation, or
V = Qzxr,has¢ = 2Q . Hence the angular velocity of the flow at a poitt B . The diver-
gence is equal to the local fractional change in area per unit time. It is known entirely from
X (X, X) or the second term on the rhs of 4.1. For a circular region, the fractional change a area
is a "da/dt = (2/r)dr/dt, wherer is radial distance. Hence the radial derivative of the aver-
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age radial velocity at a point /2.
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The remaining types of motion aranslationandstrain. These satisfy b0t2L|J =0
(irrotational) andsz = 0 (non-divergent). Flows satisfying the second condition are called
“solenoidal” flows. Flows satisfying both conditions are called “potential” flows. The Helmholtz
decomposition would be unique except for translation and strain.

Translation is simplyv = const . Thatigy and are linear functionsaifdy.

Strain is determined by the remaining second partial derivati¥s of x and

2 2 2
_o0u ov_ 0y dx 0JX
=5 oy 26x6y+ax2 o (4.4)

_du.av_ L d% oW dw
82_6y+ax = 20X0y+axz ayz. (4.5)
The decomposition betweejn  agd is not unique when strain or translation exists. Strain is the
tendency to stretch and squash material regions while preserving adsa. If dy and  are the
dimensions of a rectangular area element, it can be show§, tlat(1/p)dp/ dt , Where
U = O0x/dy, theaspect ratioof the element. IfS; >0 , the flow isonfluentalong they-axis and
diffluentalong thex-axis. Area is preserved through a balance of confluence and diffluence.

Similarly, S, = (1/p")dp’/dt, wherey’ = dx'/0dy' and the primed axes are rotated 45
deg counterclockwise fromy. Pure strain along th&- or y-axis (due toS; ) causes no stretching
inthex’ ory' directions, whereas pure strain alongthe y-or -axis (dBgto ) involves no
stretching along ory. We can now ask what is the strain in an arbitrary direction. Simply by cal-
culatingS; in a rotated coordinate system, one finds that, in the direction that makes an angle
with thex-axis, the strain is

S(¢) = S;cos(29) +S;sin(29) = Scog2(¢ - 9)], (4.6)

whereS= /ﬁ + é (total strain) and = (1/2)arctan(S,/S;) (orientation of the “principal
axis of deformation”). Specifyin§, arts, is equivalent to providing boundary conditions for

the problem((x, y), D(x, ¥) —» W(Xx, ), X(X%, y) -
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A more elegant approach: Recall from chapter 1 that the evolution of a material line ele-
ment in three dimensions is given @/ dt)dl = (ol (LI)V | or

d _ Vv,
8181y = Ea—xjg{aj}. @.7)

The antisymmetric part of the matiX = { avi/axj} B° = —{ 0V;/ 0X; — an/axi} . This
part causes rotations around each of the three coordinate gxes For example, in two dimensions,

p? = [z?z —10/2} , (4.8)

where( = Vy—Uy twice the angular velocity abdut . Now the symmetric pdd of  in two
dimensions is

u L.z
X
DS = 2 |, (4.9)
u, + Vv
y X
2 W
This contains strain and divergence in thgplane. To isolate the strain, lef + v, =0 ,so that
/2 S,/2
S22 5 (4.10)
S,/2 -8/ 2|
The resulting negative-definite matrix has the two eigenvatigs? , Where is the total strain,
obtained previously. The corresponding eigenvectorgare I:Cogp sinqﬂ eardzx e; ,

where® is the angle beween thaxis and the principal axis of deformation, also given previ-
ously interms of5; an®,

4.2 Point vortices and point mass sources

We return to the issue of using 4.2 and 4.3 tofind )and given full distributidns of
andD. There is some conceptual and mathematical benefit in using the method of Green's func-
tions. Thus, consider a “point vortex”,

¢ = Gpd(r), (4.11)

whered(r) is the 2D Dirac delta function afgl  has dimensions of vorticity times area. The
solution of 4.2 for this source, subject to a boundedness condition at infinity, is

¢
B = LoWg(r) = E?[Iogr, (4.12)

wherquG is, by definition, the Green's function for the 2D Laplacian operator. This Green’s
function is obtained by noting that in polar coordlna@sp = (1/r)(ry), if the solution is
axisymmetric.
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From 4, 1 and 4.12, the actual flow induced by a point vortex of stréggth is
= {o(21r) 5 x 7. Note that the velocity falls off as L/ There is curvature in this flow but no
vort|C|ty except at the origin.

We can also consider a point “mass” sourcelvia D,0(r) . The solution of 4.3 is
X = DO(ZT[) Iogr andV = D0(2nr) . Thereis no dlvergence away from the origin, but
there is a steady, integrable source of “mass” right at the origin.

By using Green's theorem and the above expressiapfor , we find that the solution for
Y given an arbitrary distribution @f is
1 o 2 2
P(xy) = ETJ’Z(X,V)log[(X—X) +(y-y)'ldo, (4.13)
o
whereo denotes area and the integral covers all places whefe . There is an analogous result

for x given a distribution obD.

4.3 Natural coordinates

A pattern of non-intersecting 2D trajectories determines a special orthogonal coordinate
system(s, n) calleahatural coordinates The unit vectors for this system are defiried V/|V/|
andhi=zx3s. (IfV is defined everywhere at the same time, the lines parameterigedeby
called “streak lines”.)

SinceV = V§ , withV = |V| , we find that

7 =200xV = (zx0OV) (B+V2IIx3§, (4.14)

But z[11x s = OB [B, wherel is the angle between andxaxis. Also,
(zxOV) B = -0V zx8) = -0V [h. Therefore,

= —9V/an+Vap/ds. (4.15)

The first term on the rhs is duedlbear The second term is duedarvatureand may be written
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asV/R; ,whereR; isthe “radius of curvature”. In irrotational floevy, around a point vortex),
the two terms are equal and opposite. In solid-body rotation, the two terms are equal.

The expression for divergence in natural coordinates is
D = dv/ds+Vap/on. (4.16)

The first term on the rhs is due to “longitudinal” compression or expansion. The second term is
due to confluence or diffluence. The two parts must be equal and opposite in non-divergent flows.

4.4 Absolute circulation

Definition of absolute circulation
C, = ¢V, s (4.17)

wherel™ is a closednaterialcircuit, andV , is the velocity in an inertial frame. By convention,
the path direction is chosen to keep the interior of the loop on the left.

Since the integrand in 4.17 is the velocity component along the circuit, we expect a nice
simplification when we consider the time derivativeCqf
46, _ dVEd+V[dV 4.18
R S LR (4.18)
Indeed, since the second integrand is a perfect differential, it contributes nothing to the integral.
For the first integral we substitute from the momentum equation to reach
dC
@ _ _ Dp s = 1f (4.19)
dt p
This is called Bjerknes’s Circulation Theorem. Notice that gravity -- or any other conservative
force -- cannot contribute to the closed line integral.

The rhs of 4.19 is called theolenoidal term Using the ideal-gas equation of state, we can
also write it as

dpp = Iadp = —Rdeog p (4.20)

Graphically, the solenoidal term is proportional to the “area” inBide  When is drawmppin -
space or (foranidealgasl) logp space. If the sense of the integration path changes, so does the



-4.6-

sign of the “area”.
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Tubes perpendicular to botha antp  are calletenoids The change in circulation oh is
determined by the sum of thee p eross-sectional areas of the solenoids passing through the loop.

0

DoMp% A <'r

dc _
at - 2P .,
Td” Up

dC
Kelvin's Circulation Theorem: If there are no solenoids,d—ta =0 . (Examplefif lies
in an isobaric surface.)

For yet another way to express the solenoidal term, we use Stokes’ Theorem:
Bds = ([0 x B o’ (4.22)
fpree=ll

Heredo denotes the surface element (area element times unit normal vector to the surface). If
we putB = —allp , the identity becomes

1[(—ox Op) Cds = H’S [do' . (4.22)
g
The |hs is the solenoidal term. On the s defined
S=0x(—-alp) = —Oa x dp (4.23)

Note thatSis directed along a solenoid.
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Definitions: a fluid isbarotropicif S = 0 everywhere; otherwise it ibaroclinicandSis
called thebaroclinicity vector. Examples of barotropic fluids: () constant, @) constant, (3)
T constant, (4 surfaces parallelgsurfaces.

In pressure coordinates, the pressure-gradient force is “conservative” and baroclinicity
enters through the verticgd( -) integral of the right-hand sidkpdbp = —a , the equation for
hydrostatic balance. A similar statement applies to the Boussinesq equations. In that model, the
pressure gradient is also conservative &asdmes from the vertical integral of the the buoyancy
(whether or not hydrostasy is assumed). This can change the circulation about the horizontal axes
but not the vertical.

4.5 Absolute vorticity

The definition of absolute vorticitgy, is
w,=0xV,. (4.24)

To get an equation fap, , start with the momentum equation in the form

oV, vV, DV,
a0 = -0 5 + VX w,—Uey—allp. (4.25)
Taking the curl, we obtain
0 —-V,Mo,
[l
ow 0 —w,00V
—2=pg * ° (4.26)
ot 0 +(w, )V,
0O +S.

The first and second terms on the rhsadgectionrandconvergence The fourth is the solenoidal
term.

The third term on the rhs of 4.26 is identical to the evolution of a material line element, as
discussed in chapter 1 (below Eq. 1.6). Its vertical component (for instance) is

N ow ow ow
zQw, [1IV,) = (*)ax?"; + (*)ay?); + waz'éE :

The first two terms on the rhs side desctilh@g while the third describestretching These are

(4.27)
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illustrated in the diagrams below. Stretching combined with convergence is entirely due to the

w,>0

a B< aet (17

W

W

ooa stretchmg—»

“horizontal” part of the convergence. Thus,

ow

u av
a5, * (-0 0 DV,) = (Pla , Vay (4.28)

2 [ stretch + converge = aZDax oyl

The first three terms in 4.26 can be written as a pure flux divergence. By combining the
first two and exploiting the non-divergencecwaf to rewrite the third, we get

o . _ 0
where the vorticity and velocity components are still in the inertial frame. The most important
conclusion from 4.29 is that, in the absence of solenoids (and friction), the volume-integrated vor-
ticity cannot be altered except by boundary fluxes. Thigjietzl conservation statement about
vorticity.
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By invoking mass continuity, we can write 4.26 as

pgc—?El = (w, M)V, +S. (4.30)
dt p a a
For a flow in hydrostatic balance  is removed from the expressiomfor (and the first term on
the rhs of 4.25). For the shallow-water model, illustrated below, we alsdShave and

u, = v, = 0. The latter constraint removes the remaining tilting terms in the vorticity equation.

w

hA = const

/s

The rhs of 4.30 is then the same as 4.28, i.e.ugdw/ d2  w gw/h , \Where s the
depth of the fluidw,, = ov/0x—du/dy andw is the difference in vertical velocity between
top and bottom. SincAw = dh/ dt , it follows that

dowo
S0 =0 (4.31)

in the shallow-water model. This is similar to conservation of circulation except that the recipro-
cal of thedepthnow appears instead of the area.

Definitions: A vortex lineis a line that is everywhere paralleldo .vértex tubds a
closed surface consisting entirely of vortex lines.

Theorem: Vortex lines are conserved in a barotropic flow. That is, they are “frozen” into
the fluid.

Proof. In general,

d(wx 8s)/dt = dw/dtx 5S—dds/dtx w

for any line elements . Lebs be a material line element, so tHatit)ds = 8V = OV [Bs . Ifitis initialp@a
texline element, theds = ew . Using these constraints together with the barotropic version of 4.26,

ij_(:) = -0V +(wM)V,
one can show that the rhs of the first equation vanishes. Hence the conaditiéa = 0 , which determines a vortex

line element, is maintained. It follows that the vortex line is a material line.
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This theorem can be used to extend Kelvin's Circulation Theorem to an entire vortex tube.

Think of the vectow,  as the “flow” in the tube. For any slice through the tube, consider the

productw,A= C , wheraw,, isthe area averagenfltdo/ |do] over the stice, is the surface

element and\ is the area of the slice.

>
\

A

Sincel [, = 0 (the “flow” is nondivergent), we know th&tis the same for all slices.

We may interpret it as the “intensity” of the tube. Furthermore, since material lines remain on the

surface of the tube, Kelvin's Theorem applies. We may therefore conclude that the infofity
the tube is constant in time.

4.6 Relative circulation

Definition ofrelative circulation
C= fv [ds (4.32)

whereV is the velocity in the rotating frame. Hence,

C = Ca—f(Q xr) [ds. (4.33)

By Stokes’ Theorem, the second term on the rhs becff@sx (Q xr) Mo’ . But since
Ox(Qxr) = 2Q, we have o

C = C,-2QA-, (4.34)

where A = [[cospdo’ andp is the angle betwedo' and . TRus, is the area of the
0
o

projectionof the enclosed domain onto the equatorial plane (or any plane perpendicular to
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Using 4.19, we can write

dA;
dC = fadp-207. (4.35)
dt
It follows that, in a barotropic atmosphere or oce@n; 2Q A is conserved on a material circuit.

Notice thatA; can change through latitudinal displacement as well as locally through tilting or
contraction/expansion.
Definition ofrelative vorticity
w=0xV. (4.36)
SinceV = V_—Q Xr ,we have
W= w,—2Q, (4.37)

which should be compared to 4.34.

The vertical component @b, 9,+2Qsin@=(+f ,whefe is the relative vorticity
about the vertical axis arfds the Coriolis parameter. To see what fodA-/dt  takes in the vor-
ticity equation, we derive an equation fr

First put the equations of motion in the form:

2 2
a_u_ _o+vip 0u 10p
= v+ f) S~ 0 W3, 5% Fy (4.38)
2 2
ov omut+vig 0v 10p (4.39)

ot - v )_ayD > 0 Yoz pay v

where(F,, Fy) is frictional forcing. Then by cross-differentiating, we obtain



E =V ¢ E advection
0 -v(df/ dy) 0 "beta" effect
E —((+f)D '4%:76nvergence + stretchi
O ovow duow O .
%0 Taoxozoy f titing (4.40)
O N
%—aiglgsg 6ay gggm baroclinicity
O O
O 6F oF, 0 -
0 —x__Y 0 friction
0 ay X 0
Most of the terms are familiar. Recall tHaE du/0x+dv/dy . The second term on the rhs,

normally written—v[3 , represents the so-called “beta effect”. It corresponds to changes in relative
circulation due to latitudinal displacemendsA,/0t = —Av(d/ dy)sin

For the shallow-water model, the vorticity equation 4.40 reduces to

di¢+f) _
) =+ 1)D (4.41)

in the absence of friction. Invoking mass (volume) conservation and integrating over depth, we
get

f
[{TE =0, (4.42)

QlQ_

which may be compared to 4.31.

4.7 Potential Vorticity

Circulation theorems describe a relationship between velocity and circumference or,
implicitly, between vorticity and area. There is a more powerful vorticity theorem that removes
both the convergence and solenoidal sources of vorticity by combining the circulation principle
with mass and entropy conservation. The use of mass conservation to remove the convergence
effect was illustrated for the shallow-water model in 4.31.

What does it take to make the solenoidal term disappear? The baroclinicity vector is
S=-Uax0p =-Osx0OT (4.43)

(check the second equality by assuming an ideal gas). We choose one of the quanptieand,
Tand call itA . Suppose that, for some reasth/dt = 0 . Then, since there are no solenoids in
a A -surface $ is tangent to it), the circulation around a closed loop in the surface is constant.
Then for the material tube illustrated below (not necessarily a vortex tube), we have
OA
= - 4.44

W, D)\|60 consi ( )
Heredo is a scalar element representing the average cross-sectional area of the tube between the
two A -surfaces. We also have the other two constraints noted in the diagram, so that finally

w, (TIA

= consil. (4.45)
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© OA
20N w,
Mass: =
pdodh = const m % = A
A u A\
“Entropy dh
|[OA|dh = const
o
Y o0 A = Ag—OA

This result expresses the conservatiopatiential vorticity It is important to realize that potential
vorticity is conserved even if the fluid is baroclinic.

More generally, we have Ertel's potential vorticity equation,

[(TIA
difa"%n_ @ jdh 1
Gl 5 O 5 Djdt+pm [5. (4.46)
This can be obtained by forming the scalar product of 4.26 Mith . The rhs of 4.46 vanishes if
dA/dt = 0 andUA [5 = 0 . We then have conservation of Ertel's potential vorticity, usually
denotedy. Inincompressible flow, one getky’ dt = 0 by puttikngep . In adiabatic flow of an
ideal gas,A =@ does the trick.

For large-scale disturbances in the atmosphere, we estimate:

vertical horizontal
|y 107s™ 10°s™
I00/0)| 10°m™ 10°8m™
Hence 4.45 may be approximated by
W300 _
09z cons. (4.47)

This is analogous to the quantilyh  in 4.31 and 4.42.
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Problems

4.1 Show that the 2-dimensional flow field in the vicinity of a point can be determined if
the velocity, divergence, vorticity and deformation at that point are known.

4.2 Show that the “parallel shear flow(y, v) = (0,ax) , is the sum of uniform vorticity
and uniform strain by partitioning the streamfunction into two parts.

4.3 Verify Eq. 4.6. Hint: use the definitions 4.4-4.5 and the transformations for rotations,
V' = R,V and0' = RO , where

_ | coso sina
Re ="
—sina cosa
(column vectors assumed).

4.4 Using Eq. 4.12, decide where, on the unit circle, you would place a point vortex in
order to maximize/minimiz&,  at the center of the circle. What about a point mass source?

4.5 A cylindrical column of air at 30 deg latitude with radius 100 km expands horizontally
to twice its original radius. If the air is initially at rest, what is the mean tangential velocity at the
perimeter after expansion?

4.6 An air column at 60 deg N with= 0 initially reaches from the surface to a fixed
tropopause at 10 km height. If the air column moves across a mountain 2.5-km high at 45 deg N,
what is its absolute vorticity and relative vorticity as it passes the mountaintop?

4.7 Compute the rate of change of circulation about a squarexnyhe - plane with sides
of 1000-km length if temperature increases eastward at a rate of 1 deg C per 200 km and pressure
increases northward at a rate of 1 mb per 200 km. The average pressure is 1000 mb.

4.8 A homogeneous fluid is in solid-body rotation inside a cylindrical tank. By how much
does the relative vorticity change in a column of fluid that is moved from the center of the tank to
a distance 50 cm from the center? The fluid is rotating at the rate of 20 revolutions per minute and
the depth at the center is 10 cm.



